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Introduction  

In recent years, the global financial landscape has been significantly transformed by the 

confluence of globalization and rapid advancements in information technology (Comin and 

Nanda, 2019). This unprecedented interconnectedness has given rise to the challenge of the 

proliferation of shock contagion across financial markets (Acemoglu et al., 2016). This 

phenomenon involves the propagation of shocks and the amplification of their impacts, 

transcending geographical boundaries and creating a web of interdependencies (Chen & Zhang, 

2023). The historical backdrop of this phenomenon traces back to the watershed event of the 

1987 stock market crash, which kindled intense debates among scholars and policymakers 

(Forbes & Rigobon, 2002). This discourse revolved around the dramatic and interconnected 

disruptions experienced by international financial markets, each embedded within unique 

regional contexts (Claessens & Forbes, 2001;  Aloui et al, 2011) . However, the aftermath of 

the 1997–1998 Asian financial crisis led to a scholarly exploration into volatility transmission, 

and it gained notable momentum (Kyle & Obizhaeva, 2023). Thus,  during this period, there is 

a noticeable trend among researchers actively engaged in elucidating the concept of financial 

contagion and the spillover of volatility between various stock markets. (Gammill & Marsh, 

1988; Gkillas et al., 2019). In the subsequent decades, we witnessed an exponential surge in 

financial crises, coupled with seismic shifts in volatility patterns ( Baele & Inghelbrecht, 2010). 

These patterns extended researchers’ reach beyond the confines of the originating country, 

encompassing regional and inter-regional markets (Diebold & Yılmaz, 2012). The trajectory 

observed has sparked renewed academic interest as researchers sought to decipher the 

intricacies of volatility transmission mechanisms and their overarching implications. In doing 

so, they embarked on a journey to fathom the intricate interplay between the dynamism of 

global financial networks and the oscillations of market volatility (Ghazani et al., 2023). 

Financial market spillover effects, such as how they alter during significant occurrences of 

stock market crashes, can offer important insights into the mechanics of asset class 

interconnection (Hung & Vo, 2021). For example, the ripple effects of two major financial 

crises, the COVID-19 pandemic and the global financial crisis of 2008. The global financial 

crisis of 2008 demonstrates the strong interdependence and spillover effects among financial 

systems, as problems in one area or industry quickly expanded to another. The market becomes 

anxious because investors are looking for safe havens and complicated derivative markets such 

as credit default swaps (Kang & Yoon, 2019). The crisis needs to be contained by government 

bailouts and central bank interventions, which highlights the significance of interconnection 

for dynamic asset allocation and volatility control in our research. The 2020 COVID-19 crisis 

brought in abrupt market shocks that have different effects on different industries (Contessi & 

De Pace, 2021). Digital assets gained popularity due to central bank initiatives and industry 

differences that affected asset values. Tensions in geopolitics had repercussions. Thus, it is 

important to assess the significance of interconnectivity analysis for dynamic asset allocation 

and volatility control, which is the aim of our study. 

In recent years, the application of Machine Learning (ML) techniques has gained prominence 

as a means to address the intricate nonlinear dynamics and complex nature inherent in financial 

markets. Demonstrating the enhanced efficacy of these approaches, D’amato et al. (2022) 



3 
 

established the superiority of deep learning methods over conventional techniques, effectively 

capturing intricate data interactions. This trend is further corroborated by Song et al. (2023 and 

2024). In their  investigation they compared deep learning, hybrid ML, and traditional 

econometric forecasting models across various frequencies, revealed the superior predictive 

accuracy of deep learning. This encompassed correlation analysis and the ranking of feature 

importance. Existing Research explores the applications of deep learning techniques in 

financial forecasting and risk management (Ozbayoglu et al., 2020., Kim et al., 2020.). 

"Machine Learning in Financial Crisis Prediction: A Survey" (Lin et al., 2011.) -  reviews the 

various ML approaches employed in predicting financial crises. Henrique et al., (2019) and 

Nikou et al., (2019) discuss the application of ML algorithms in predicting financial market 

movements. Others examined the interrelatedness among Decentralized Finance (DeFi), 

cryptocurrencies, stock markets, and safe-haven assets, shedding light on their interconnected 

dynamics (Ugolini et al., 2023).  In this research, we extend the above works and address the 

gap related to volatility spillover among various asset classes to diversify the assets of a 

portfolio over time. The research paper delves into analyzing the levels of connectedness 

between DeFi assets, cryptocurrencies, and traditional stocks. The interconnectedness between 

cryptocurrency and other assets helps in better effective diversification on the part of the 

investor, as it exhibits a low correlation with traditional assets, decentralization, inflation 

hedge, and non-correlated risk. Furthermore, cryptocurrencies offer certain privileges, such as 

access to new and emerging markets, making them an increasingly attractive component in 

diversified investment portfolios. Thus, the research question we examine in this research is as 

follows: How dynamic asset allocation and volatility management can be measured by 

interconnected spillover matrix?  

Following the literature on investment and volatility, in this research we use  historical price 

data from Yahoo Finance and examine 8 assets which includes 4 cryptocurrencies BTC, ETH, 

BNB and LINK) and 4 stock indices GSPC, FTSE, N225 and NSE (Li & Giles, 2015, Mensi 

et al., 2016) from 9th November 2017 to 15th July 2023. The key techniques used in our work 

are: a predictive Convolutional LSTM model, the Joint Spillover Index, and the Diebold and 

Yilmaz Spillover Connectedness Matrix (Vidal & Kristjanpoller, 2020, Kim & Won, 2018, 

Lastrapes & Wiesen, 2021). These methods assist us in assessing returns and volatility while 

looking at the relationships and spillover effects between different asset classes. The goal of 

this research is to improve volatility control and dynamic asset allocation techniques so that 

investors may make better choices. We are proposing to investigate how spillover and 

connectedness play vital roles in shaping the dynamics and volatility of these different financial 

assets, providing valuable insights for both academics and practitioners in the field of finance.  

 

The volatility and projected return are crucial factors for investors. They provide important 

information about the dangers and possible gains connected to different investment 

opportunities. Investors can make well-informed judgments regarding expected gains by 

precisely calculating returns, and they can determine the degree of risk or uncertainty 

associated with their investments by evaluating volatility. With this knowledge, investors can 

better optimize their investing strategies by customizing their portfolios and striking a balance 

https://www.sciencedirect.com/science/article/pii/S1568494620303240
https://www.sciencedirect.com/science/article/pii/S0377221719309099
https://ieeexplore.ieee.org/abstract/document/6069610/
https://www.sciencedirect.com/science/article/pii/S095741741930017X
https://onlinelibrary.wiley.com/doi/abs/10.1002/ijfe.1506
https://www.sciencedirect.com/science/article/pii/S1059056015002270
https://www.sciencedirect.com/science/article/pii/S1059056015002270
https://www.sciencedirect.com/science/article/pii/S0957417420303055
https://www.sciencedirect.com/science/article/pii/S0957417418301416
https://www.sciencedirect.com/science/article/pii/S0264999319306091
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between their desired returns and risk tolerance. In the end, we want to give investors the 

information and resources they need to make more calculated and risk-aware investing 

decisions in a changing financial environment. 

In the following sections of the paper we include the methodology and results of the research 

question and conclude our study by explaining the key findings and direction for future 

research. 

 

 

2. Data Preparation 

We download the historical price data from Yahoo Finance, using its API library 

yfinance. In our analysis we examine eight assets which includes four cryptocurrencies BTC, 

ETH, BNB and LINK) and four stock indices GSPC, FTSE, N225 and NSE (Sahiner, 2023, 

Duan et al., 2023, Bouri et al., 2020). Daily Open, High, Low, and Close (OHLC) price data 

are collected from 9th November 2017 to 15th July 2023. Since the stock markets have 

holidays, and the cryptocurrency markets doesn’t, the days of holidays are dropped from the 

data.  

Following Diebold & Yilmaz (2012), the daily variance is estimated using daily high and low 

prices for market 𝑖 on day 𝑡  𝜎𝑖𝑡
2  is: 

𝜎𝑖𝑡
2  =  0.361[ln(𝑃𝑖𝑡

𝑚𝑎𝑥) − ln(𝑃𝑖𝑡
𝑚𝑖𝑛)]

2
                                       (1) 

where 𝑃𝑖𝑡
𝑚𝑎𝑥 is the maximum (high) price in market 𝑖 on day 𝑡, and 𝑃𝑖𝑡

𝑚𝑖𝑛 is the daily minimum 

(low) price. 

The corresponding estimate of annualized daily volatility is  𝜎𝑖𝑡
𝑎𝑛𝑛 is: 

           𝜎𝑖𝑡
𝑎𝑛𝑛 =  √𝜎𝑖𝑡

2 × 252                                                     (2) 

Here, 252 is the average trading days per year. The natural log and difference of 𝜎𝑖𝑡
𝑎𝑛𝑛 is taken, 

to make the data closely stationary. 

A rolling window method is used to form a sequence of images for the whole time 

frame (Kong & Luo, 2022, Lee & Kim, 2020, Antonakakis et al., 2017) .The stationarity check 

is carried out for window sizes 90, 120, 150 and 180. The stationarity is true for window sizes 

150 and 180, hence 150 is the window size of the study. A 2-channel image is constructed for 

each window on a rolling window basis. A total of 1099 sequences of images are constructed.  

Since the sequence of images must be inputted into a ConvLSTM layer, a batch of six 

consecutive images are used as a sample input (i.e. time-steps = 6). Model 1 outputs an array 

of the 7th day's closing prices of all assets, while Model 2 outputs the 7th day's annualized 

volatility of all assets. Finally, the data is split into training and testing sets, with the test set 

accounting for 20% of the total data. 

https://link.springer.com/article/10.1007/s10614-023-10412-4
https://www.sciencedirect.com/science/article/pii/S1059056023002058
https://www.sciencedirect.com/science/article/pii/S1062976920300326
https://www.sas.upenn.edu/~fdiebold/papers/paper99/DirectionofSpillovers_Mar10.pdf
https://www.sas.upenn.edu/~fdiebold/papers/paper99/DirectionofSpillovers_Mar10.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22971
https://www.sciencedirect.com/science/article/pii/S0957417420305285
https://www.sciencedirect.com/science/article/pii/S1057521917300042
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3. Methodology 

3.1 Diebold and Yilmaz Spillover Connectedness Matrix 

First, we use the Diebold & Yilmaz (2014) methodology to construct the connectedness 

spillover matrix. To study the volatility spillover connectedness between cryptocurrencies 

(BTC, ETH, LTC, XRP, ADA, BNB, LINK, BAT) and stocks (S&P500, Nasdaq, Dow Jones, 

FTSE).  

The construction of the connectedness matrix is initiated by estimating a Vector 

Autoregression (VAR) model. with 𝑝 lags for a set of 𝑁 variables of 𝜎𝑖 for 𝑖 = 1,2, … . , 𝑁. The 

VAR model employed in this study is a linear regression model that predicts the future values 

of a set of variables based on their past values. It is important to note that the time series data, 

in this case volatility, must be rendered stationary prior to estimating the VAR model. The 𝑝 

lags in the VAR model refer to the number of previous time periods that are used to predict the 

current value of a variable. The 𝑁 variables in the VAR model refer to the number of different 

variables that are being predicted. The equation for the VAR model is: 

𝜎𝑡 = ∑ 𝛽𝑡−𝑙𝜎𝑡−𝑙 + 𝜖𝑡
𝑝
𝑙=1                                                (3) 

where 𝜎𝑡 is the vector of values for the 𝑁 variables at time 𝑡, 𝛽
𝑡−𝑙

 is a 𝑁 × 𝑁 matrix of 

coefficients that relates the values of the variables at time 𝑡 − 𝑙 to the values of the variables at 

time 𝑡, 𝜖𝑡 is the vector of error terms at time 𝑡 with a distribution 𝑁(0, 𝜎2).  

In the second stage of constructing the connectedness matrix, we transform the VAR model 

into a moving average representation. The equation for the moving average representation of 

the VAR model is as follows: 

𝜎𝑡 = ∑ 𝐴𝑖𝜖𝑡−𝑖
∞
𝑖=0        (4) 

Where, 𝐴𝑖 is a 𝑁 × 𝑁 matrix of coefficients that obeys the recursion 𝐴𝑖 = ∑ 𝜙𝑖𝐴𝑖−𝑙  𝑝
𝑙=1 , with 

𝐴0 being a 𝑁 × 𝑁 identity matrix and 𝐴𝑖 = 0 for 𝑖 < 0. 

Finally, we calculate the generalized Forecast Error Variance Decomposition matrix (FEVD) 

that shows how much of the forecast error variance for each variable is due to its own past 

shocks, the past shocks of other variables, and the contemporaneous shocks of other variables. 

(Climent & Meneu, 2003., Antonakakis et al., 2017.) 

We calculate the FEVD using the following equation: 

𝜃𝑖𝑗
𝑔(𝐻) =

𝜎𝑗𝑗
−1 ∑ (𝑒𝑖

,𝐴ℎ𝛴𝑒𝑗)
2𝐻−1

ℎ=0

∑ (𝑒𝑖
,𝐴ℎ𝛴𝐴ℎ

, 𝑒𝑖)𝐻−1
ℎ=0

      (5) 

where, 𝛴 is the variance-covariance matrix for the error vector 𝜖, 𝜎𝑗𝑗   is the standard deviation 

of the error term for the 𝑗th equation, 𝑒𝑖 is the selection vector, with 1 as the 𝑖th element and 

zeros otherwise, and 𝐻 is the number of steps ahead in the forecast. 

https://www.sas.upenn.edu/~fdiebold/papers/paper106/dieboldandyilmaz2011.pdf
https://www.sciencedirect.com/science/article/pii/S1059056002001405
https://www.sciencedirect.com/science/article/pii/S1057521917300042
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3.2 Two Channel Image Construction using Joint Total Spillovers 

In the second stage, the matrix obtained using the Diebold and Yilmaz Spillover  

connectedness matrix is duplicated and stacked to form a 2-channel image. The first channel is 

the “from” channel and the second is the “to” channel. The joint total spillover method, 

proposed by Lastrapes & Wiesen (2021) is used to process the channel normalisation, 

performing a the calculation of the joint total spillover from all others to variable 𝑖 and the joint 

total spillovers to all others from variable 𝑗 respectively.  

Each 𝑖th row of the first channel matrix is divided by the joint total spillover from all 

others to variable 𝑖 to form a normalised “from” channel. Similarly, each 𝑗th column is divided 

divided by the joint total spillovers to all others from variable 𝑗 to form a normalised “to” 

channel. Since the diagonal elements of each channel matrix represent the self spillover effects, 

the diagonal elements of each channel matrix are replaced by zero inorder to eliminate the self-

spillover effects in our analysis. 

 

3.3 Convolutional Long Short-Term Memory (ConvLSTM) 

LSTM (Long Short Term Memory) is a recurrent neural network architecture 

commonly used for time series forecasting and analysis. The model passes the previous hidden 

state information to the next step of the sequence, to use it to make decisions. Hence these types 

of models are used for inputs with temporal dimensions.  

 

Figure 1: A LSTM Cell.  

When working with images the spatial positions also matter. Convolutional Neural 

Networks (CNN) architectures use convolutional layers that takes spatial positions into 

consideration while extracting important features from the images using several filters.  

ConvLSTM layers, is a type of recurrent layer just like LSTM, but internal matrix 

multiplications are exchanged with convolutional operations (Zhou et al., 2017, Kelotra & 

Pandey., 2020). Hence the ConvLSTM cells keep the temporal and spatial dimensions into 

https://www.sciencedirect.com/science/article/pii/S0264999319306091
https://ieeexplore.ieee.org/abstract/document/8305063
https://www.liebertpub.com/doi/abs/10.1089/big.2018.0143
https://www.liebertpub.com/doi/abs/10.1089/big.2018.0143
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consideration. The input of a ConvLSTM is a set of images over time as a 5D tensor with shape 

(samples, time_steps, channels, rows, cols). 

 
 

Figure 2: A ConvLSTM Cell, 

Finally, we propose a deep neural network architecture that has a ConvLSTM Encoder part 

followed by two LSTM layers and two dense layers. Finally, the model parameters are 

display in Table 1. 

 

Sl. No. Parameter Value 

1 Epochs 50 

2 Loss Function MSE 

3 Optimizer Adam 

4 Batch size 32 

5 Validation split 0.2 

 

Table 1: Model Parameters  

 

3.4 Evaluation Metrics 

The models are evaluated using the R-squared and Adjusted R-squared metrics. R-

squared and Adjusted R-Squared metrics are commonly used to evaluate regression models. 

These metrics say how well the regression model explains observed data. The value of R-

squared is between 0 and 1. The more the value is closer to 1, the better the model explains the 

observed data. R-squared tends to optimistically estimate the fit of the linear regression. It 

always increases as the number of effects are included in the model. Adjusted R-squared 

attempts to correct for this overestimation. Adjusted R-squared might decrease if a specific 

effect does not improve the model. Adjusted R-squared is always less than or equal to R-

squared. (Leach & Henson, 2007, Ash & Shwartz, 1999)  

http://www.glmj.org/archives/MLRV_2007_33_1.pdf#page=4
https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1097-0258(19990228)18:4%3C375::AID-SIM20%3E3.0.CO;2-J
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The R-squared is calculated by: 

𝑅2  =  1 −  
∑ (𝑦𝑖 −  �̂�)2𝑛

𝑖

∑ (𝑦𝑖 − 𝑦)
2

𝑛
𝑖

     (6) 

Here, 𝑛 represents the number of data points in our dataset. 𝑦 represents the actual values, �̂� is 

the predicted value and 𝑦 is the mean of actual values. 

The Adjusted R-squared is calculated by: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2  =  {1 − [
(1−𝑅2)(𝑛−1)

(𝑛−𝑘−1)
]}    (7) 

Here, 𝑛 represents the number of data points in our dataset. 𝑘 represents the number of 

independent variables, and 𝑅2 represents the R-squared values determined by the model. 

The values of R-squared and Adjusted R-squared are calculated separately for each 

asset among the 8 assets. Since the image inputted has 8 columns and 2 channels, the value of 

𝑘 is taken as 16. 

 

4. Results 

The R2 Score and the Adjusted R2 Score values of the Model 1 of all assets separately 

are shown in Table 2. The values suggests that the model estimates the close price with a good 

accuracy. This estimated price gives an investor the view of the direction of the price of an 

asset. Figure 3 shows plot of predicted price and original price of Model 1.  

Similarly, R2 Score and the Adjusted R2 Score values of the Model 2 of all assets 

separately are shown in Table 3. The values suggests that the model estimates the 150-day 

volatility with a good accuracy. This estimated volatility gives an investor the view of risk of 

an asset. Figure 4 shows plot of predicted volatility and original volatility of Model 2.  

 

 BTC-

USD 

ETH-

USD 

BNB-

USD 

LINK-

USD 

GSPC FTSE N225 NSEI 

Train 

MSE 

0.009579 0.005621 0.008097 0.005430 0.004056 0.003357 0.003566 0.002550 

Test 

MSE 

0.009227 0.007957 0.005818 0.004908 0.003246 0.002406 0.003159 0.002169 

R2 Score 0.990185 0.992060 0.993853 0.994891 0.996896 0.997693 0.997107 0.997899 

Adjusted 

R2 

0.989408 0.991431 0.993366 0.994486 0.996650 0.997510 0.996878 0.997733 

 

Table 2: R2 Score and the Adjusted R2 Score values of the model 1 
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Figure 3: Plot of predicted close price using model 1 and original close price. 

 

 BTC-

USD 

ETH-

USD 

BNB-

USD 

LINK-

USD 

GSPC FTSE N225 NSEI 

Train 

MSE 

0.009579 0.005621 0.008097 0.005430 0.004056 0.003357 0.003566 0.002550 

Test 

MSE 

0.009227 0.007957 0.005818 0.004908 0.003246 0.002406 0.003159 0.002169 

R2 Score 0.990185 0.992060 0.993853 0.994891 0.996896 0.997693 0.997107 0.997899 

Adjusted 

R2 

0.989408 0.991431 0.993366 0.994486 0.996650 0.997510 0.996878 0.997733 
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Table 3: R2 Score and the Adjusted R2 Score values of the model 2. 

 

 

Figure 4: Plot of predicted volatility using model 2 and original volatility 

 

 Finally, four Global Minimum Variance (GMV) portfolios were created with different 

methods of covariance estimation. In the first portfolio, the covariance was estimated in the 

standard way using the returns of previous days close prices and volatilities, second used the 

predicted close prices from Model 1 to estimate the covariance. The third portfolio used the 

predicted volatilities and the fourth used both the predicted close prices and the predicted 

volatilities to estimate the covariance. The portfolio performance of the four GMV portfolios 

are shown in Table 4 and Figure 5.  
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 Standard Covariance 

Estimated 

using Model 1 

only 

Covariance 

Estimated 

using Model 2 

only 

Covariance 

Estimates 

using both 

Models 

Annualized 

Return 

0.108636 0.109073 0.113126 0.135602 

Annualized 

Volatility 

0.162511 0.171677 0.161288 0.171851 

Skewness -0.355560 -0.603911 -0.509630 -1.069687 

Kurtosis 17.468625 18.059324 18.292196 24.129967 

Cornish-Fisher 

VaR (5%) 

0.014325 0.015741 0.014446 0.015596 

Sharpe Ratio 0.496783 0.472746 0.527692 0.622769 

Maximum 

Drawdown 

-0.341846 -0.310821 -0.330804 -0.312471 

 

Table 4: Portfolio performance of 4 GMV portfolios 

 

 

Figure 5: Portfolio values of 4 GMV portfolios over time. 

 

It is observed that covariance estimated with Model 1 i.e., the model that predicts the 

close price of the assets gives a slightly better returns and a significant reduction in the 
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maximum drawdown by 3%. The covariance estimated with Model 2 i.e., the model that 

predicts the volatility of the assets gives slight increase in annualized return, and a decrease in 

annualized volatility, eventual increasing the Sharpe ratio by 0.31. The model also shows a 

better maximum drawdown. The covariance estimated by models combined gives the 

maximum increase in annualized return of 2.67%, slight increase in annualized volatility and 

significant increase in Sharpe ratio by 0.126 and reduction in maximum drawdown by 2.9%. 

These results suggest that spillover effects and connectedness between different assets and 

markets can help in asset allocation and risk management by investors, similarly to the work 

of Kong & Luo, (2022). The predicted close price and volatility in this research can be used by 

investors to get an idea of market trend as well as the risk, which is useful to create portfolios 

of their own choice. The covariance estimation using the models trained using spillover effects 

connectedness matrix to construct GMV portfolios shows an example of how predicted values 

can be used by investors. The reduction in maximum drawdown also suggests that this method 

can be a help in crash detection or warning systems. 

 

5. Conclusion  

In this paper, we examine an effective method of measuring interconnection of the dynamic 

asset allocation and volatility management with spillover matrix. In doing so, we employ a 

three-stage approach - the Diebold and Yilmaz (2014) method to construct the connectedness 

spillover matrix, Lastrapes and Wiesen (2021) algorithm to process the channel normalisation 

and a deep neural network architecture (ConvLSTM) to address a research gap related to 

volatility spillover among various asset classes to diversify assets of a portfolio over time. To 

the best of our knowledge, no prior volatility research has attempted to employ these methods 

together to investigate volatility spillover.  

We summarize our empirical results as follows. For this study, we analyse the levels of 

connectedness between DeFi assets, cryptocurrencies, and traditional stocks. We use historical 

price data from Yahoo Finance and examine 8 assets which includes 4 cryptocurrencies BTC, 

ETH, BNB and LINK) and 4 stock indices GSPC, FTSE, N225 and NSE between 9th 

November 2017 to 15th July 2023.With an estimated higher R2 and adjusted R2 as well as the 

covariance in our baseline analysis, we find that the model that predicts the volatility of an 

asset can predict slight increase in annualized return, and a decrease in annualized volatility, 

that eventually increases the Sharpe ratio by 0.31. Our combined estimation from all the models 

show reduction in maximum drawdown by 2.9%.  

Our study contributes to the investment and volatility literature by providing evidence that the 

covariance estimation using the trained models using spillover effects connectedness matrix to 

construct GMV portfolios shows an example of how predicted values can be used by investors. 

We therefore offer the following two conclusions. First, there is potential for the further 

development of efficient asset allocation in portfolios associated with volatility. Second, our 

method can help in detecting market crash detection which is an early warning signals for risk 

management by investors. Since traditional mean–variance spanning test ignore higher order 
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moments, by using Diebold and Yilmaz (2014) model and ML such as ConvLSTM, one can 

extend our analyses to mean–variance-skewness spanning tests on the diversification benefits 

for multiple asset classes. 
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